Ensayo de cultivo de carpa en arrozales simulados

Aprovechar al máximo los esfuerzos y los recursos, es uno de los conceptos básicos de la cultura productiva. En nuestros países existen grandes superficies, tanto terrestres como acuícolas, de las que no siempre se obtiene el mejor provecho. La integración agri-acuícola, si bien aparece como una alternativa lógica, se ha limitado prácticamente al hemisferio oriental. Se relata aquí una experiencia con carpa en Argentina, que promete servir de ejemplo a emprendimientos similares en la región.

Por Gustavo Wicki, S. Panné Huidobro y L. Luchini(*)

¿Para qué integrar?

La piscicultura integrada al agro se conoce ampliamente en Asia y en pocos países de Occidente, no existiendo prácticamente antecedentes en Sudamérica. Las técnicas de esta integración se difundieron en el Sudeste Asiático provenientes de la India, hace 1.500 años, para mejorar la eficiencia del agro (Tamura, 1961). En Occidente recibieron poca atención, debido a la falta de tecnologías, cierta complejidad en el tratamiento y una tradición en monocultivo (De la Cruz, 2001).

Para una integración “vegetales-pesces”, se necesitará adecuar el terreno según las producciones, y los peces deberán adaptarse a los requerimientos de la principal de ellas (el arroz en este caso). La especie de pez a seleccionar deberá entonces, soportar altas temperaturas del agua junto a bajos tenores de oxígeno disuelto, consecuencia del escaso nivel de agua (entre 5 y 12 cm), de los arrozales. Deberán construirse refugios adecuados para los peces, con nivel y calidad de agua aceptables, y un cierto que evite su escape y que facilite las cosechas. Aunque cuando ello implique un costo mayor en mano de obra, la producción de arroz se beneficiará con la fertilización orgánica y con la reducción de las poblaciones de insectos dañinos para el vegetal (Hora y Pillay, 1962), obteniéndose así, una producción de proteína de alto valor y costos reducidos.

La integración de los cultivos aumentará el beneficio del sector rural cuando su economía esté afectada, maximizará la utilidad de la tierra, aportará los nutrientes extraídos por la práctica continua del arroz y producirá proteína disponible para poblaciones rurales o urbanas con valor agregado, ya que a las cosechas, la tasa de los peces serán reducidas y el producto no será destinado al consumo directo. La elaboración de esta materia prima en hamburguesas o carne picada, permitirá su inclusión en las comidas, mejorando la ingesta mínima proteica (de 50g diarios de pescado) recomendada por la OMS para las poblaciones deficitarias.
La producción de arroz en el país (campaña 2002/03), fue de 717.630 TM, siendo las provincias de Entre Ríos y Corrientes las mayores productoras (344.230 y 300.860 ton, respectivamente, según la SAGPyA, 2003). La disminución del área arroceras sembrada con respecto al pasado, resultó en un aumento en los costos de producción (en especial combustible en las zonas de riego con napa profunda). Esto afectó su rentabilidad, además de la baja de su precio y la menor demanda de Brasil, su comprador principal (Grupos CREA, 1998).

La técnica

Para planificar un cultivo integrado de este tipo, se deben conocer las técnicas de laboreo de las tierras y los sistemas e intercambios de los cultivos del cereal, a menor de los fertilizantes y plaguicidas que se utilizan y su momento de uso (INTA, 2001; INTA, 2003). El arroz se siembra en suelo seco y el cultivo en general, abarca los meses de septiembre a diciembre. A los 30-40 días de emergencia de las plantas, se inunda, permaneciendo así hasta 15 días previos a su cosecha (durante un período de 80 a 100 días). El terreno cercado con tapias, mantiene el nivel de inundación con una lámpara de agua de 5 a 12 cm de altura. El agua proviene de pozos profundos, represas artificiales o ríos, según la disponibilidad, por lo que los costos serán diferentes. La práctica de la forma será la de mayor costo y su eficiencia determina la rentabilidad del cultivo. Por ello, las variedades de arroz empleadas actualmente (El Paso 144, Taim, Chui e Irga 417) permiten un menor nivel de agua en las arroceras.

Para el control de malezas se aplican herbicidas, sembrándose el arroz, 10 días después de esta aplicación. Los ríndes promedio para el cereal catalagado como "largo-fino" en el comercio, son superiores a los 7.000 kg/ha y los cosechados inician hacia fines de febrero.

En la Tabla 1, figuran los herbicidas más empleados y los principales insectos que atacan al arroz. Estos podrán ser alimentado de la especie de pez seleccionado reduciendo, así sus poblaciones.

<table>
<thead>
<tr>
<th>Principales insectos que atacan al cultivo de arroz</th>
<th>Pesticidas utilizados para su control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oruga militar (Spodoptera frugiperda)</td>
<td>Piretroides: Permethrina 100-120 cc/ha;</td>
</tr>
<tr>
<td></td>
<td>Cipermetrina 100 cc/ha y Decis 90 cc/ha</td>
</tr>
<tr>
<td>Barrenador (Diatraea saccharalis)</td>
<td>Monocrotolos: Nuvacron,</td>
</tr>
<tr>
<td></td>
<td>Monocron a razón de 700-800 cc/ha</td>
</tr>
<tr>
<td>Chinche del tallo (Tribrae limbativentris)</td>
<td>Endosulfan 1-1.2 cc/ha, Monocrotolos</td>
</tr>
<tr>
<td></td>
<td>(700 cc/ha) o Deltametrina (180 cc/ha)</td>
</tr>
<tr>
<td>Chinche del grano (Oebalus poecilus)</td>
<td>Endosulfan (1-1.2 cc/ha) Monocrotolos (700</td>
</tr>
<tr>
<td></td>
<td>cc/ha) y Deltametrina (180 cc/ha)</td>
</tr>
<tr>
<td>Gorgojo acuático (Oryzophagus oryzae)</td>
<td>Carbofurán (Furadan), Fipronil, piretroides.</td>
</tr>
</tbody>
</table>

Las arroceras argentina se sitúan principalmente en climas templado-húmedo de llanura y en el subtrópico húmedo. Las temperaturas ambientales del templado, oscilan entre 17,5 y 19ºC (25 a 26ºC en el mes más caluroso), siendo mayores al norte del país. La humedad relativa anual media es del 73%, con mínimas del 61%. La época de mayores precipitaciones va de octubre a abril, variando según las áreas. Los suelos son de tipo arcilloso, con lentísimo escurrimiento y diferentes gradaciones de materia orgánica en descomposición, ideales para el cultivo de peces.

Porqué la carpa

Las carpas y tilapias son especies de valor social y/o comercial y de rápido crecimiento. Se utilizan principalmente en Asia para este tipo de cultivo integrado por esas razones, aunque también debido a su especifica resistencia a las condiciones ambientales. La carpa común (Cyprinus carpio) sigue siendo uno de los peces de agua dulce más cultivado en el mundo (2 millones de toneladas-FAO, 2000), con un amplio aumento en producción a partir de 1977.

Esta especie, originaria de China, fue introducida al país en la década del 40 y se ha expandido agresivamente debido a su fácil y natural reproducción, junto a una disminución en la calidad de los sistemas acuáticos continentales. A partir de 1982 se la encuentra en toda la cuenca del Plata, habiendo inclusive superado en los primeros años de su invasión, la biomasa del sábalo (la especie autóctona de mayor producción fluvial) en el Río de la Plata.

Se trata de un pez escamoso, muy resistente y de carácter ubicuo. Toleran condiciones adversas del medio y se reproduce a los 6 meses de edad (Hepher, 1993). Es por ello que no desova en los arrozales, dado que sus pesos finales a las cosechas, no superan los 250 g, y el tiempo de residencia no sería mayor a 130 días. Dentro de sus variedades, la más conocida es la "espejo", con reducido número de esquamas. De régimen alimentario omnívoro, consume zooplancton cuando juvenil, y a los 10 cm de talla se alimenta de fauna del fondo, ingiriendo larvas de insectos, vermes y moluscos. En las experiencias realizadas se emplearon alevinos de medio gramo de la variedad producida en la zona. Dado el incipiente desarrollo de la acuicultura en Argentina, la ausencia de cultivos integrados y existiendo extensas áreas.
ACUICULTURA

de arroz bajo cultivo, se propuso la obtención de respuestas experimentales acerca de la viabilidad de la especie en un cultivo integrado, persiguiéndose los siguientes objetivos: a) determinar su crecimiento a distintas densidades; b) obtener una talla final apta para posterior procesado con valor agregado; c) comparar el crecimiento de los lotes alimentados con afrechillo de arroz vs aquellos sin oferta de alimento externo y d) comprobar la resistencia de la variedad seleccionada a las altas temperaturas del agua y a los bajos tenores de oxígeno, en las condiciones de aguas someras de los arrozales.

El ensayo se llevó a cabo en el Centro Nacional de Desarrollo Acuícola (CENADAC - 27°32'S, 58°30'W) y abarcó 160 días de cultivo entre los meses de noviembre y marzo. Se emplearon 4 estanques excavados en suelo arcilloso y superficie individual de 300 m², excavándose en cada unidad un refugio (tipo canal) de 3 cm de ancho por 100 de largo y 25 a 30 de profundidad. El nivel medio del agua se mantuvo en 1 a 10 cm. Previo a las siembras (octubre), se fertilizaron los suelos con urea a una tasa de 50 kg/ha (similar a la empleada en el cultivo de arroz). La densidad inicial de siembra fue de 2,6 ind./m², con peso promedio de 0,5 g. En dos de los estanques se alimentó a los peces con afrechillo de arroz a una tasa corporal del 5% de la biomasa inicial en forma diaria, reduciéndose al 1% hacia el final del ensayo. Por su parte, en los estanques restantes no se ofreció alimento alguno. Las variables de temperatura del agua, nivel de Oxígeno Disuelto (OD) y pH se registraron diariamente a primera hora de la mañana y en la tarde. Se efectuaron biométricas a intervalos de 30 días, regulándose entonces la ración alimentaria, constatándose por observación visual el estado sanitario de las poblaciones.

Las temperaturas del agua variaron entre los 16,8 y los 37,7°C, registrándose un promedio de 23,9°C; los niveles de OD fluctuaron entre 0,8 y 10,1 mg/l, valores promedio de 3,86 mg/l, y el pH se mantuvo entre 6,07 y 8,84 con un promedio de 7,6. Estos datos fueron comparados con los obtenidos en estanques de 1,3 m de profundidad media, utilizados para cultivo de engrande final de la especie pacú realizados en igual temporada (Wicki et al., 2003). La temperatura en los últimos días oscila entre 19,1 y 35,8°C, la concentración de OD entre 0,89 y 13,8 mg/l; comprobándose que las diferencias encontradas en el presente estudio fueron mínimas. Los valores máximos, mínimos y promedios de las variables registradas se encuentran graficados en la Gráfica 1.

Resultados
El crecimiento de los peces alimentados con afrechillo de arroz (E-9 y E-10) mostró ser mayor a la cosecha final que el de aquellos que no recibieron tal tratamiento, manifiestándose además una notoria diferencia entre pesos en los dos lotes analizados, siendo este el resultado de una mayor mortalidad producida en uno de los cultivos (E-9). Los resultados obtenidos del análisis de los Factores de Conversión Relativa (FCR) obtenidos (6,96 para E-9 y 2,21 para E-10) muestran que hubo sobreoferta de alimento en E-9 (Tabla 2).

Las producciones finales obtenidas fueron de 367,6 kg/ha para el E-9 (con peces de mayor tamaño) y de 283 kg/ha para el cultivo de E-10, ambos suplementados con afrechillo de arroz. En las dos restantes unidades se obtuvieron 226,6 y 223,9 kg/ha. La sobrevivencia mostró una gran variabilidad entre las unidades experimentales, con un rango de entre 4,5 y 38,1 %; Las mortalidades se estiman como resultado de predación por insectos durante las primeras semanas de cultivo (no se observaron aves predadoras ni mortalidades por efectos de bajos niveles de OD) y la mayor mortalidad registrada (95,5 %) se debió a presencia de anguilas de la especie Symbanchus marmoratus, un carinovíor por excelencia que abunda en las arroceras de la región. Las unidades restantes mostraron mortalidades de entre 64,3 y 69,9 %.

Procesamiento
El interés del procesamiento de los pescados y el valor agregado conferido a los mismos (en forma de filetes, hamburguesas y picados), se originó por el ofrecimiento de que habían realizado previamente ciertas empresas pesqueras que estaban interesadas en la adquisición de la materia prima. En el país se elaboran hamburguesas y otros productos en base a pacú de cultivo y peces de río como tales como carpas, sátalo y tararira, que abundan en los ambientes naturales. Para estudiar el rendimien-

Tabla 2 - Pesos promedios (en gramos) obtenidos en las biométricas periódicas realizadas

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Estanque 9 *</th>
<th>Estanque *10</th>
<th>Estanque *11</th>
<th>Estanque **11</th>
<th>Estanque **12</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/12/01</td>
<td>28.05</td>
<td>19.17</td>
<td>10.21</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>18/01/02</td>
<td>59.26</td>
<td>29.57</td>
<td>12.04</td>
<td>12.71</td>
<td></td>
</tr>
<tr>
<td>15/02/02</td>
<td>159.8</td>
<td>55.6</td>
<td>20.5</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>21/03/02</td>
<td>264.09</td>
<td>86.32</td>
<td>25.62</td>
<td>27.60</td>
<td></td>
</tr>
<tr>
<td>17/04/02</td>
<td>323.29</td>
<td>91.8</td>
<td>21.95</td>
<td>27.88</td>
<td></td>
</tr>
</tbody>
</table>

piecés alimentados con afrechillo de arroz y alimentación natural.
**piecés sin alimento externo y alimentación natural.*

<table>
<thead>
<tr>
<th>Rango de peso en gramos</th>
<th>Largo total cm</th>
<th>Peso entero gr</th>
<th>Peso eviscerado gr</th>
<th>Peso eviscerado %</th>
<th>Peso cabeza gr</th>
<th>Peso cabeza %</th>
<th>Peso residuo s/visceras gr</th>
<th>Filet con piel gr</th>
<th>Filet con piel %</th>
<th>Filet sin piel gr</th>
<th>Filet sin piel %</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ejemplares 27,5-31,5</td>
<td>29,83</td>
<td>365,5</td>
<td>323,5</td>
<td>83,38</td>
<td>91,98</td>
<td>25,10</td>
<td>52,12</td>
<td>75,5</td>
<td>41,2</td>
<td>61,6</td>
<td>33,7</td>
</tr>
<tr>
<td>10 ejemplares 18,5-22,0</td>
<td>20,25</td>
<td>116,9</td>
<td>104</td>
<td>88,86</td>
<td>31,53</td>
<td>26,97</td>
<td>15,03</td>
<td>22,7</td>
<td>38,62</td>
<td>17,26</td>
<td>29,58</td>
</tr>
</tbody>
</table>

La densidad juega un rol preponde-

te en la obtención de las mayores
tallas; resultando peces de mayor
talla a menor densidad de siembra o a la
resultante. De realizarse un cultivo piloto
comercial en una arrocería, deberán con-
templarse las mortalidades registradas,
para compensarlas a la siembra inicial.
Sería recomendable efectuar también un
"primer levante" de los alevinos de muy
bajo peso previo a su siembra, disminuy-
endo entonces la mortalidad al inicio.
Asimismo, se sugiere manejar el culti-
vo con aporte de alimento externo como
el alfeñique de arroz, una alternativa
razonable dado su bajo costo y disponi-
bilidad, frente a los beneficios que ofre-
ce en cuanto a crecimiento de los pe-
ces. Estos ensayos experimentales, solo
ofrecieron respuestas primarias, para
una planificación futura en emprendimientos en campo, ya que el
éxito de un programa de integración de

Gráfica 1 - Variables ambientales registradas durante el periodo de cultivo

Gráfica 2 - Curvas de crecimiento de los peces cultivados a diferentes densidades y alimento

Tabla 3 - Resultados promedio en carpa

En la Tabla 5, se muestran los resulta-
ds obtenidos de los análisis efectua-
dos sobre músculo de carpa, con la de-
terminación de la composición proximal
correspondiente.
La materia prima obtenida fue trans-
formada en hamburguesas, bajo el mé-
todo de formulación estándar (2% sal,
0% agua y 10% pan rallado) y la mez-
cla se rebozó también, en forma
estándar. Al término, se fritó el mate-
rial en aceite de girasol a 180°C duran-
te 4 minutos y se degustó para determi-
nar sus características de consumo, con
evaluación inmediata de color, sabor y
textura. Los resultados se expresan en
la Tabla 6.

Conclusiones

Los peces procesados tenían un ran-
go de peso vivo de entre 102 y 420 g.
Los tamaños más convenientes para su
procesamiento resultaron ser los de 330
-370 g. Los resultados del "cultivo si-
mulado de arroz-peces" mostraron que
las densidades finales se ubicaron entre
0,12 a 1,03 ind/m² a la cosecha, mos-
trando además un amplio rango de pe-
sos, de 233 y 21g, respectivamente. Los
peces de mayor peso promedio, se ori-
ginaron en los cultivos donde se ofreció
alimento externo, aunque evidentemen-

ACUICULTURA

ABR/13/2015

INFOPESCA Internacional - 41
Tabla 4 - Rendimiento de filetes sin piel

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Ejemplar N°</th>
<th>Largo (cm)</th>
<th>Entero (gr)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>31,50</td>
<td>420,00</td>
<td>29,95</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>30,00</td>
<td>362,00</td>
<td>34,48</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>30,00</td>
<td>373,00</td>
<td>39,60</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>30,00</td>
<td>360,00</td>
<td>35,62</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>30,00</td>
<td>345,00</td>
<td>33,42</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>30,00</td>
<td>345,00</td>
<td>33,42</td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>27,50</td>
<td>333,00</td>
<td>29,32</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>22,00</td>
<td>141,00</td>
<td>28,57</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>19,50</td>
<td>116,00</td>
<td>30,71</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>20,50</td>
<td>117,00</td>
<td>30,47</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>20,00</td>
<td>117,00</td>
<td>26,12</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>21,00</td>
<td>124,00</td>
<td>27,91</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>18,50</td>
<td>102,00</td>
<td>33,40</td>
</tr>
<tr>
<td>X5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>21,00</td>
<td>121,00</td>
<td>30,75</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>20,50</td>
<td>106,00</td>
<td>25,09</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>20,00</td>
<td>111,00</td>
<td>31,95</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>19,50</td>
<td>114,00</td>
<td>30,87</td>
</tr>
<tr>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendimiento promedio</td>
<td></td>
<td></td>
<td></td>
<td>30,50</td>
</tr>
</tbody>
</table>

Tabla 5 - Determinación de la composición proximal del músculo de carpa

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>Proteínas</th>
<th>Grasas</th>
<th>Carbohidratos</th>
<th>Humedad</th>
<th>Muestra</th>
<th>Hamburguesas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17,25</td>
<td>1,30</td>
<td>1,66</td>
<td>80,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16,82</td>
<td>2,15</td>
<td>1,79</td>
<td>79,96</td>
<td>si</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18,27</td>
<td>2,10</td>
<td>2,05</td>
<td>78,47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18,28</td>
<td>2,87</td>
<td>2,02</td>
<td>78,79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17,02</td>
<td>2,37</td>
<td>1,86</td>
<td>79,59</td>
<td>si</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>17,30</td>
<td>2,00</td>
<td>2,14</td>
<td>79,32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>17,49</td>
<td>2,13</td>
<td>1,92</td>
<td>79,38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6 - Características de la carne de hamburguesas

<table>
<thead>
<tr>
<th>Característica</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Marrón muy claro "beige"</td>
</tr>
<tr>
<td>Sabor</td>
<td>Suave, agradable</td>
</tr>
<tr>
<td>Textura</td>
<td>Muy buena, aireada, firme pero no dura</td>
</tr>
<tr>
<td>Espinas</td>
<td>El tamaño de las perforaciones (4 mm) permitió el paso de espinas de gran tamaño (aprox. 1 cm)</td>
</tr>
</tbody>
</table>

Produciones como las ensayadas residió en la adopción de tecnologías previamente adaptadas a la región. Si bien el progreso puede ser lento, es deseable, pues el éxito cubriría dos aspectos relacionados y de importancia: a) el rol social, con posibilidad de disponer de un producto de calidad con valor agregado, ampliamente aceptado y simple de consumir (especialmente para escuerras rurales del área, donde se ha ensayado recientemente con éxito la carne picada y hamburguesas de pacú de cultivo, y b) obtención de un mayor beneficio económico para los productores de arroz. También se considera posible a futuro, la utilización de las vísceras de los peces procesados, reconviértiéndolas a ensilados, ya empleados con éxito en la alimentación de peces en cultivo, como fuera determinado en investigaciones en el mismo CENADAC (Wicki y otros, 2003).

Agradecimientos:
Los autores agradecen especialmente al Ing. E. Manca (INIDEJ) por los análisis y apuntes realizados, al Tec. Ac. F. Rossi y al staf del CENADAC por las tareas realizadas. Este desarrollo fue realizado con fondos provenientes de la Subsecretaría de Pesca y Acuicultura, Secretaría de Agricultura, Ganadería, Pesca y Alimentos (SAGPyA).

G. Wicki: Dirección de Acuicultura, Secretaría de Agricultura, Ganadería, Pesca y Alimentos-SAGPyA - lluchi@sagpya.minproduccion.gov.ar
S. Panné y L. Luchini: Jefe del Centro Nacional de Desarrollo Acuícola-CENADAC - guilegus@arnet.com.ar
Bibliografía en poder de INFOPESCA.